Placental 5-methylcytosine and 5-hydroxymethylcytosine patterns associate with size at birth.

نویسندگان

  • Chinthika Piyasena
  • Rebecca M Reynolds
  • Batbayar Khulan
  • Jonathan R Seckl
  • Gopi Menon
  • Amanda J Drake
چکیده

Altered placental function as a consequence of aberrant imprinted gene expression may be one mechanism mediating the association between low birth weight and increased cardiometabolic disease risk. Imprinted gene expression is regulated by epigenetic mechanisms, particularly DNA methylation (5mC) at differentially methylated regions (DMRs). While 5-hydroxymethylcytosine (5hmC) is also present at DMRs, many techniques do not distinguish between 5mC and 5hmC. Using human placental samples, we show that the expression of the imprinted gene CDKN1C associates with birth weight. Using specific techniques to map 5mC and 5hmC at DMRs controlling the expression of CDKN1C and the imprinted gene IGF2, we show that 5mC enrichment at KvDMR and DMR0, and 5hmC enrichment within the H19 gene body, associate positively with birth weight. Importantly, the presence of 5hmC at imprinted DMRs may complicate the interpretation of DNA methylation studies in placenta; future studies should consider using techniques that distinguish between, and permit quantification of, both modifications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

5-Hydroxymethylcytosine localizes to enhancer elements and is associated with survival in glioblastoma patients

Glioblastomas exhibit widespread molecular alterations including a highly distorted epigenome. Here, we resolve genome-wide 5-methylcytosine and 5-hydroxymethylcytosine in glioblastoma through parallel processing of DNA with bisulfite and oxidative bisulfite treatments. We apply a statistical algorithm to estimate 5-methylcytosine, 5-hydroxymethylcytosine and unmethylated proportions from methy...

متن کامل

5-Methylcytosine and 5-Hydroxymethylcytosine Spatiotemporal Profiles in the Mouse Zygote

BACKGROUND In the mouse zygote, DNA methylation patterns are heavily modified, and differ between the maternal and paternal pronucleus. Demethylation of the paternal genome has been described as an active and replication-independent process, although the mechanisms responsible for it remain elusive. Recently, 5-hydroxymethylcytosine has been suggested as an intermediate in this demethylation. ...

متن کامل

Tissue-specific Distribution and Dynamic Changes of 5-Hydroxymethylcytosine in Mammalian Genomes*

Cytosine residues in the vertebrate genome are enzymatically modified to 5-methylcytosine, which participates in transcriptional repression of genes during development and disease progression. 5-Methylcytosine can be further enzymatically modified to 5-hydroxymethylcytosine by the TET family of methylcytosine dioxygenases. Analysis of 5-methylcytosine and 5-hydroxymethylcytosine is confounded, ...

متن کامل

Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development.

The Tet family of enzymes (Tet1/2/3) converts 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Mouse embryonic stem cells (mESCs) highly express Tet1 and have an elevated level of 5hmC. Tet1 has been implicated in ESC maintenance and lineage specification in vitro but its precise function in development is not well defined. To establish the role of Tet1 in pluripotency and development,...

متن کامل

Effects of Tet-induced oxidation products of 5-methylcytosine on Dnmt1- and DNMT3a-mediated cytosine methylation.

We investigated systematically the effects of Tet-induced oxidation products of 5-methylcytosine on Dnmt1- and DNMT3a-mediated cytosine methylation in synthetic duplex DNA. We found that the replacement of 5-methylcytosine at a CpG site with a 5-hydroxymethylcytosine, 5-formylcytosine, 5-carboxylcytosine or 5-hydroxymethyluracil resulted in altered methylation of cytosine at both the opposite a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Epigenetics

دوره 10 8  شماره 

صفحات  -

تاریخ انتشار 2015